A Divided Latent Class analysis for Big Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Divided Regression Analysis for Big Data

Statistics is an important part in big data because many statistical methods are used for big data analysis. The aim of statistics is to estimate population using the sample extracted from the population, so statistics is to analyze not the population but the sample. But in big data environment, we can get the big data set closed to the population by the advanced computing systems such as cloud...

متن کامل

A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection

Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Latent class models for financial data analysis: some statistical developments

I exploit the potential of latent class models for proposing an innovative framework for financial data analysis. By stressing the latent nature of the most important financial variables, expected return and risk, I am able to introduce a new methodological dimension in the analysis of financial phenomena. In my proposal, (i) I provide innovative measures of expected return and risk, (ii) I sug...

متن کامل

Feature-specific penalized latent class analysis for genomic data.

Genomic data are often characterized by a moderate to large number of categorical variables observed for relatively few subjects. Some of the variables may be missing or noninformative. An example of such data is loss of heterozygosity (LOH), a dichotomous variable, observed on a moderate number of genetic markers. We first consider a latent class model where, conditional on unobserved membersh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2017

ISSN: 1877-0509

DOI: 10.1016/j.procs.2017.06.111