A Divided Latent Class analysis for Big Data
نویسندگان
چکیده
منابع مشابه
A Divided Regression Analysis for Big Data
Statistics is an important part in big data because many statistical methods are used for big data analysis. The aim of statistics is to estimate population using the sample extracted from the population, so statistics is to analyze not the population but the sample. But in big data environment, we can get the big data set closed to the population by the advanced computing systems such as cloud...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملLatent class models for financial data analysis: some statistical developments
I exploit the potential of latent class models for proposing an innovative framework for financial data analysis. By stressing the latent nature of the most important financial variables, expected return and risk, I am able to introduce a new methodological dimension in the analysis of financial phenomena. In my proposal, (i) I provide innovative measures of expected return and risk, (ii) I sug...
متن کاملFeature-specific penalized latent class analysis for genomic data.
Genomic data are often characterized by a moderate to large number of categorical variables observed for relatively few subjects. Some of the variables may be missing or noninformative. An example of such data is loss of heterozygosity (LOH), a dichotomous variable, observed on a moderate number of genetic markers. We first consider a latent class model where, conditional on unobserved membersh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.06.111